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P L A N A R  P R O B L E M  O F  H Y D R O D Y N A M I C  S H A K I N G  O F  A 

S U B M E R G E D  B O D Y  I N  T H E  P R E S E N C E  O F  M O T I O N  IN  A 

T W O - L A Y E R E D  F L U I D  

I. V. Sturova UDC 532.582.31 

We investigate the shaking of a regularly agitated horizontal cylindrical body, located in the lower layer of a two- 

layered fluid. The body moves uniformly at a constant depth in the direction perpendicular to its axis, and carries out harmonic 

oscillations under the action of parallel or opposite waves. The given problem is solved by linear theory methods. The free 

waves appearing on the body, as well as the induced shaking of the submerged body and the waves thus formed, are assumed 

to be small. The fluid is assumed to be ideal and incompressible, with potential flow in each layer. 

The presently available theoretical studies of hydrodynamic shaking of a submerged body in the presence of motion 

[1-8] were carried out only for a homogeneous fluid, and with the single source of external agitation being surface waves. A 

more complex problem is the study of the effect of external agitation on a body moving in a stratified fluid. In this case the 

agitation can be generated by both surface and free internal waves. The motion of a body under the free surface of a 

homogeneous fluid is a special case of this problem. 
1. Statement of the Problem. In the unperturbed state the upper layer of the fluid of density ,o 1 has a depth H 

and occupies the region - o o  < ~ < oo, 0 < y < H, while the lower infinitely deep fluid layer of  density P2 = (1 + e)p 1 

(e "> 0) occupies the region - oo < ~ < oo, y < 0, where ~ is the horizontal and y is the vertical coordinate. Along with 

the fixed coordinate system (X, y) we introduce the moving system (x = X - Ut, y), moving together with the body with 
F 

constant velocity U. For simplicity it is assumed that the upper layer of the fluid is bounded by a solid cover. The existence 

of only free internal waves; resulting from the presence of a separation boundary between the layers, is possible. In the fixed 

coordinate system the velocity potential for the incident internal wave is 

ko ^(1) chk0(Y - H) ~o(s)= e~', (1.1) 
tV('~ = L~o[~expli(w0! + kox ) l, ~'0 = sh"-'-k0 H ' 
-o ko u 

where only the real part has a physical meaning; ~o is the wave frequency in the fixed coordinate system, the plus and minus 

signs correspond to the codirectional and opposite waves, the wave number of the incident waves k o is determined from the 

dispersion relation 

Wo2 = f22(ko) - egko / ( l  + e + cthkoH); (1.2) 

the indices s = 1, 2 were introduced for the upper and lower layers, and g is the gravity field acceleration. 

In the fLxed coordinate system expression (1.1) acquires the form 

i w  

t o'(', = ~ " e x p l i ( w t  "+ kox ) 1. 
0 

Here r is the apparent oscillation frequency of wave particles, which by the Doppler shift equals r = r o -T- koU. 
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Assuming that the perturbed oscillatory motion of the fluid is steady-state, the total velocity potential of  the whole wave 

motion is written in the form 

q~"(x,y,t)  = - U x  + U-~"(x,Y)  + ReErziO~'~(x,Y) e"~', (1.3) 
./=0 

where ~(s) are the velocity potentials corresponding to uniform motion of a body with unit velocity, ~j(s) (j = 1, 3"-'--3 
characterize the radiation potentials resulting from purely induced shaking of the body with three degrees of  freedom in uniform 

fluid flow in the absence of incident waves, 1/j are the amplitudes of body motion corresponding to the horizontal, vertical, and 

rotational body oscillations, <I,o(S) = ~%(S)exp(q: ikox), is the velocity potential of the incident wave, ~4 (s) are the diffraction 
potentials determining the wave motions generated as a result of incidence of regular waves on the body as a fixed obstacle, 

and 1/0 = 1/4 is the amplitude of the incident wave. 
For the stationary potential inside the fluid we have 

Ar ;l) = 0 (0 < y < H), ACp(2) = 0 (y < 0). (1.4) 

Starting from linear wave theory, we write down the boundary conditions at the upper boundary 

o<l)(l~ / Oy = 0 (y = H) ,  

at the separation surface 

~2~(2) ~2~(1) sg o~(l) 0~(l) ~(2) 
- -  - -  + u 2 - - - 0 , - - - - -  ( y = 0 ) ,  (1 + e) Ox 2 ~x 2 Oy dy ~y 

and in the far field 

- -  ~ 0 ( y  ~ - r  00('-----~ ...> 0 ( x  ~ oo), < oo ( x  ~ - o 0 ) .  

Oy OX i-Wx I 
It is assumed that the body is completely located in the lower layer, and due to the smallness of its oscillations the nonleaking 
condition is imposed on the surface of the body in its mean position L:0~(2)/0n = nx(X, y, E L), where n = (nx, ny) is the 
internal normal to the surface of the body. 

Similarly to Eq. (1.4), the components of the radiation and diffraction potentials satisfy the equations 

a o !  '~ = o (o < y < ~ ') ,  aro~ 2~ = 0 (y < 0) 1 

with boundary conditions: 

Here 

(1 + e)NO~ 2} - N~P! -t- egOO~l) / Oy = O, 0 ~ l ) / 0 y  = OdP~2) / Oy (y = 0); 

o ~ / o y - ,  o ( y - ,  -~*) ;  

OdP!2)/On, = icon i -- U m  ( j  = l"~, ),  OOP~2)/On = -OO~2) /On ( x , y  �9 L) .  

g - ( U O / O x  - /to)2; (n l ,n  2) = ( n , n ) ;  n 3 = (y - y0)n - (x - x0)n; 

(m,,m,,m3) = t0,,0;, 0,,0--7' a (' - '~ - 1  - ( x -  x0)-- ;jl 

(1.5) 

(1.6) 
(1.7) 

(1.8) 

and x 0, Yo are the coordinates of the point, with respect to which rotational oscillations of  the body are carried out. The 
boundary conditions for Oj(s) that a wave propagating ahead of the body can exist only when its phase velocity is positive, and 
the group velocity is higher than the body velocity, while in the opposite case wave motions exist only behind the body. 

We note that in several studies (see, for example, [9]) the first boundary condition in (1.8) is given without the second 

term. The appearance of this term is related to taking into account the interaction between the stationary and oscillatory flow 
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modes, i.e., taking into account the small deviation of the real body position from its mean position. The important role of 
this term in determining the hydrodynamic load, particularly at low frequencies, was investigated in detail in [5] for the 
example of a circular cylinder. 

Hydrodynamic forces and torques, resulting from the body's translational motion, oscillations, and scattering waves, 
act on the body during the agitating motion. The general expressions for the force F and torque M are determined by 
integration of the fluid pressure p = -p2(3#(2)/0t + [ v,I ,(2) I 2/2) �9 over the surface of the body L: 

F = fpnd l ,  M = fpn3dl.  (1.9) 
1,. L 

It is convenient to introduce the representations F = (F 1, F2), M = F 3 and replace (1.9) by the sum 

' but  Fj = F j + ReI(Fj + F ) e  l, (1.10) 

where the first term results from the uniform translational motion of the body: 

= - [ v $  '2' 12/2)n, dZ; 
L 

and the second term is the contribution of the nonstationary potentials #j(2) (j _ 1, 3). The three components of this force 

and the torque can be written in matrix form 
3 

F,,j = ~r1,~1,, r~, = -p2f(icoc~2~ + VV~,2>)nd / (I.11) 
k = l  L 

(V = Uv(~ (2) ~ x) is the velocity vector of stationary flow in the lower layer relatively to the moving coordinate system). 
The coefficients rjk represent the complex force acting in direction j and resulting from sinusoidal body oscillations with unity 

amplitude in direction k. These coefficients can be represented in the form rjk = r - -  io~Xjk, where/~jk are known as 

combined mass coefficients, and kjk are damping coefficients. 
The perturbation (diffraction) forces and the torque are determined as follows: 

Since 

F,j = - p f l 0 f [ ~ ( ~ 2 )  + ~ ) )  + 7 V ( ~  2)+ ~c42')lnjdl. (1.12) 
L 

f vv~C,2~nfll = - u f m ~ 2 '  dl, 
L L 

by using the boundary conditions on the body (1.8) relations (1.11), (1.12) can also be represented in the form 

0~2~* O~! 2~* 
' ,., f_.....2__:~c2) + ap~'))dl ~ ,  = P J  O~n k at' G = t ' :o  On " o 

l .  L 

(the asterisk denotes complex conjugate). 
An effective numerical method of solving these problems in a homogeneous fluid is the Hybrid Finite Element Method 

(HFEM) [4, 8]. In this method the velocity potential for the lower layer is represented by the f'mite element method in a 
narrow region surrounding the body and by boundary integral equations in the exterior region. The HFEM combines the 
advantages of both methods; the flow behavior far from the body is reflected in the Green's function, while the choice of simple 
rectangular geometry of the exterior contour makes it possible to carry out the surface integration quite accurately. Note that 
in the HFEM one avoids the calculation of second derivatives of the stationary potential in boundary conditions (1.8). This 
method can he used for bodies of complex shape, systems of bodies, and can also be extended to the case of a stratified fluid, 

in which the density variation occurs only at horizons located above or below the submerged body. 
A stationary load for an elliptic contour in a two-layered unbounded fluid was treated by the HFEM in [10], and 

perturbation forces during shaking without motion (U = 0) in a two-layered fluid, bounded from above either by a solid cover 

or by a free surface, were treated in [11]. 
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2. T h e  G r e e n ' s  Func t ion .  To use the H F E M  it is necessary to determine the Green ' s  function G(S)(x, y ,  7, ~), 

satisfying the equations 

Lx6 ~" = 0 (0 < y < H) ,  ix6 ~2~ = 2~6(x - ~ , y  - 7) (Y < 0) 

with boundary conditions similar to (1.5)-(1.7). The solution for G (2) is 

G ~2~ ln(rrz) + 2(1 + e ) p v f  F(k) e~+, ,  • {[(U2~ _ ~o2) 2 _ (U2k 2 + o j 2 ) f 2 2 ( k ) l c o s k ( x  - *) 
= ~ h ( k )  

0 

+ 2 i w k U f 2 2 ( k ) s i n k ( x  - ~ ) }dk  + n{aaexp[kz(Y + r/ - i ( x  - ~))1 - a 2 e x p [ k 2 ( Y  + rl - i ( x  - ~)) ]  (2.1) 

- a 3 e x p l k 3 ( y  + r 1 + i ( x  - ~))1 + a4exp[k4!Y + ~/ + i ( x  - ~))]}. 

Here  the symbol pv denotes an integral in the principal  value sense, 

r 2 = ( x -  ~)2 + ( y _  r/):; ~ = ( x -  ~)~ + (y + r/)2; 

F ( k )  = (1 + e + c thkH) - l ;  D = D~D2D3D4; 

Dt.2(k ) = Uk  + as -T- f2(k); D3.4(k ) = V k  - co -T- f2(k); 

the function fl(k) is determined by the dispersion relat ion (1.2), ce s = i(1 + e)f}(ks)F(ks)/2ks[U - -  3,cg(ks) ] (3' = 1 for s = 1, 

3, 3' = - I  for s = 4); and cg(k s) = dfi /dk I k=k, is the group velocity of  wave k s. The equation Dl (k)  = 0 has two simple 

roots (k 1, k 2) with simultaneous satisfaction of the conditions 

U < U ,  co < % ,  (2.2) 

where U c = x/'geH is the critical velocity for the stationary problem in the two-layered fluid considered,  and ~c = fl(ke) - -  

Uk c is determined after solving the equation cg(k c) = U. When  co = co c both roots coalesce,  and no real  roots  exist when 

conditions (2.2) are not satisfied. The equation D2(k) = 0 has no real roots, while the equations D3(k ) = 0 and Dg(k ) = 

0 always have one real  root (k 3 and k 4, respectively).  In the presence of  all four roots they are a r ranged  in the following 

order:  0 < k 4 < k 2 < k~ < k 3. In the moving coordinate system the k 1 and k 2 waves have posit ive phase velocit ies,  and 

therefore they move to the right, but only the k 2 wave has a positive group velocity and propagates  ahead of  the body.  The 

k 3 and k 4 waves have negative phase and group velocities and propagate behind the body to the left. In the f ixed coordinate 

system the k 1, k 2, k 3 waves move to the right, and the k 4 wave - -  to the left. If  conditions (2.2) are not satisfied, the terms 

including k 1 and k 2 in (2.1) must be removed (for more  detail  see [5, 8, 12]). 

In the limiting case of  an infinitely large upper layer  (H----oo) the Green ' s  function (2.1) is more  convenient ly  written 

in the form 
-1  + ~ ,. dk  ~. + . 

_ ~--.L--lnr~ + 2 2g~-~+ ~ p v J ~ ' ~ e  ~ "' G ~) = lnr  2 + ~ 

x [(U~k ~ + w ~ - g k ) c o s k ( x  - ~)  + 4 i w U k s i t l k ( x  - ~)]  + b-t 0 + t ){ l e~  ts§162 (2.3) 

+ e%(Y+q-it~-~ 4r + [e%O '+')+i(x-~)) - e " 3 e + , " ~ - ~ ) ) l / ~ } / ( 2  + e), 

where z = oJU/g; g = eg/(2 + e), and 

kz~ = ~-~(1 - 2T +-- ~/l -- 4T )-;.k3. 4 = - ~ ( 1  + 27 +_ Vl + 4~). 

In this case co c = 0 .25g /U . In  the limit e --, co Eq. (2.3) provides the Green ' s  function for an infinitely deep homogeneous  fluid 

with a free surface,  which was investigated in detail in [1, 4-7]. Computational  algorithms for  its calculat ion were  given in [6]. 

For  a homogeneous fluid of  finite depth the Green ' s  function for  the problem under consideration was de te rmined  in [8]. 

In calculating the far field characteristics it is sufficient to restrict the discussion to Green ' s  function values at x - 

--, + 0 o .  For  the Green ' s  function (2.1) at x - ~ --, 

G ~2~ ~ - " 2 ~ a 2 e x p [ k z ( y  + rl - i ( x  - ~ ) ) l ,  

a n d a t  x -  ~ - c o  

G ~2~ -~ 2 ~ { a ~ e x p [ k t ( y  + r I - l ( x  - ~) ) ]  - a 3 e x p [ k 3 ( y  + rl + l ( x  - ~) ) ]  

+ a 4 e x p [ k 4 ( Y  + rl + l ( x  - ~))]}. 
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Consequently, using (1.1) and the Green's equation, one obtains for x --) oo 

dp!') = A 2 , T ~ " ( k 2 ) e - ' ~ z  ~ (j = 1,-'4); 
/ (2.4) 

a n d  f o r  x --,. - o~  

O! ~) = Atj~,~')(kl)e-'*, ~ + A3jT~*)(k3)e'k~ + A4j~,~')(k,)e'k:, 
1 

(2.5) 

where 
- k 2 h  + . Ali = ale-klhK+(kl); A2j - a2e  ~ (k2), 

a~j = -a3e-~KTj  (k3); A,, = a4e-ke~KT(k~); 

and Kj ~: (k s) is the analog of the Kochin function 

For the diffraction problem in the fixed coordinate system only the k 4 wave can be in the opposite direction, while 

k 1, k 2, k 3 can be codirectional, depending on the frequency of the incident wave. For low frequency values (~ < Wc) the 

incident wave is the wave with k 0 = k x, and then it becomes the wave with k 0 = k 1. For U > 6oo/k 0 the apparent 
frequency co becomes negative, but since this has no physical meaning the time factor in (1.3) must be replaced by e -i~t, as 

oJ = koU - -  o~ o. In this case one must also change the sign of the first term in (1.8), and the Green's  functions in (2.1), (2.3) 

must be replaced by their complex conjugates. The physical condition U > Coo/k 0 implies that the cylinder overtakes the 
incident wave, and in the moving coordinate system the wave moves to the right, in which case k 0 = k 3. 

Knowing Oj(s), one can determine the vertical elevation ~" of the separation boundary: 

L - L l o c '  - (I + e)'.t,~') I,=0. 
= e g O t  

Taking into account (2.-4) and (2.5), the amplitudes of radiation and diffraction waves in the far field satisfy 

~,~ = k A ~ / Q ( k ) .  (2.6) 

3. An Approximate  Solution. Versions of the Hask ind-  Newman relations were obtained in [5, 8] for radiation and 

diffraction problems in the presence of motion. Unlike the case without motion, there exist no symmetries of  the radiation 
loading matrix, and one can only express the diagonal damping coefficients and the perturbing forces in terms of the far field 

characteristics. 
In the two-layer fluid considered the relation for the diagonal damping coefficients is 

P2 
,l~ - ,.(l + e-------~(M'IA~ I' - M2IA~ 12 - M3IA3j 12 + M, IA,~] 2)' (3.1) 

where 

= nC~)F~( ( ) IV  - rc~(()  l / ~ g  (s = l,'-q). 

According to the wave properties U - -  cg(kl, 3) > 0, U - -  Cg(k 2) < 0, U + cg(k 4) > 0, and, consequently, the third term 

in (3.1) is always negative, while the remaining terms are always positive. This implies that under certain conditions the 

damping coordinate system can acquire negative values, while in the absence of motion these characteristics are always positive. 

Relation (3.1), corresponding to the energy conservation law, physically implies that the k 3 wave guarantees a wave energy 
flux directed toward the body, while for the other three waves the wave energy flux is directed away from the body. The 

occurrence of negative kid values is possible when the k 3 becomes dominant. 
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The perturbation forces are expressed similarly to (3.1) in terms of the far field characteristics of the radiation and 

diffraction problems. 

Relations (3.1) make it possible to obtain an approximate solution for Xii under the assumption of deep submersion 

under the separation boundary of the body. The stationary flow potential, as well as the radiation and diffraction potential, 

are determined for a homogeneous unbounded fluid, and without including an upper layer. In this case the nonleaking condition 

at the surface of the body and the damping condition far from it are satisfied. 

Consider the elliptic contour xZ/a 2 + (y + h)Z/b 2, where a and b are, respectively, the major and minor ellipse 

semiaxes, and h is the submersion depth of its center under the separation surface. Using the solution [13] for the stationary 

potential and the results of [11], the analog of the Kochin function can be represented in the form 

K~(k.) = • 4=~~ ) + b f  l(asin"O - bcos20)S? + (a + b)(a2sin20 - b:cos:O)S2 IdO, 
c (3.2) 

0 

i4:rwa: b) f sinOcosO( S~ + 2ahS[)dO, K~(k) = J3kc)  - b ( .  + 
C q 

K3(k ) = 2~al  -+ 2, '~: :(kc) - U(a + b ) J t ( k c ) / c l  + b(a + b)fsinO{.S? + bla 2 + (.2 _ b2)cos:0 IS;}dO. 
0 

Uexp[k(bsinO • iacosO)] 
Here S~(k,O) = Uk(,sinO +-. ihcosO)exp[k(bsin 0 +_ i~,cosO) 1; S~(k,O) = ' " 'O 

a'si,ZO + b:cos20 (a'sm" + bZcosZ0) 2 ' 

c = x/a 2 - -  b2; and Jn is the Bessel function of order n. 

In the special case of a circular cylinder of radius b these expressions simplify substantially: 

/X~(k), X~(~), K;(~)I  = z ~ b : { ~ u  • ~ ,  - i(,. • uk),u}. 

The defect of this approximation is that K3 + does not vanish, despite the fact that rotational oscillations of a circular cylinder 

in an ideal fluid do not excite wave motion. This is, obviously, a consequence of the fact that in the stationary problem the 

given approximation provides a nonphysical result for the hydrodynamic torque [14]. 

For the diffraction problem, in calculating approximate K4 • values the results of [11] can be carried over completely: 

for an incident wave with k 0 = k 1, k 2 
K*~(k) = 4~n:Z2ana (k,,)a (). 

,,=1 (3.3) 

K-(L~ , = -4~En:t , , (k)b , (ko);  
for an incident wave with k 0 = k 3 ,,= 

K~ ~/:) = - 4:~.a.,(/~)b,,(k0). 

K-Ak. ) = 4~,mn(k.o)a:(kl; 

and for an incident wave with k o = k 4 

4 * * where K2(k) = - n ~ n a ( k ) b ( k o ) ,  

K2(k) ~ "(~,) q,) = 43 na o an ' 

n ~ l  

In the special case of a circular cylinder an(k) = (- i)n(kb)n/n!,  bn(k) = 0, and for wave motion with 1% = k t, k 2 

, . ./2 (a ) n/'2 
nta + b~ . ,  a -__...~b 

an(k ) = ( - i )  [ ~ -  bJ J,,(kc); b (k) = ( - t )  + b J (kc). 

while for wave motion with k o = k 3, k 4 

(I 1 is the modified Bessel function). 

K4(k ) = 4stb kv~okl~(2b k'~ok), K'~(k) = O, 

X2(k)  = O, K2(k) = Z~b kV~okrl(Zb k'/-Ufio~) 
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Consequently, only one new wave is generated during wave scattering by a moving circular cylinder for arbitrary 

velocity values U. Only a reflected wave k2(kl) is generated for wave motion kl(k2). The incident wave k 3 (or k4) is scattered 

into a k 3 and k 4 wave without the appearance of reflected waves. This is a consequence of the fact that there exists no 

reflection during wave diffraction by a circular cylinder with U = 0. A more detailed comparison of  these approximate results 

with the complete solutions of the radiation and diffraction problems for a circular cylinder under the free surface of a 

homogeneous fluid was presented in [1]. 

A comparison of  the approximate solution (3.2) with the numerical solution of the original problem for the radiated 

wave amplitudes, generated during the motion of the elliptic contour under the free surface of a homogeneous fluid is given 

in Figs. la-c, respectively, for horizontal, vertical, and rotational oscillations relative to the cylinder center with U/wCga = 0.2, 

b/a = 0.3, h = a + b. Line 1 shows the results of [3], and line 2 - -  the approximate solution (2.6) with the use of the 

approximate solutions (3.2). The arrows indicate the critical frequency value o~ c = 0.25g/U. For the given parameters of 

motion the amplitudes of the k 1 and k 2 waves are negligibly small. 

The diffraction wave amplitudes at the free surface are shown in Figs. 2a,b for the same parameters of  motion, 

respectively, for the opposite k 4 wave and for the codirectional k 2 wave. Line 1 shows the results of [3], and line 2 - -  the 

approximate solution (2.6) with account of  (3.3) for reflected waves. The relative amplitude of  the transient wave is always 

is always equal to 1 within the given approximation. For the given parameters of motion the scattering in the k I and k 3 waves 

is negligibly small. It is seen that the approximate solutions describe quite well the qualitative behavior of excited waves, but 

somewhat distort their quantitative values. 

4. Numerical Solutions. The most complete calculations of the radiation problem for a circular cylinder, submerged 

under the free surface of a homogeneous fluid of inf'mite depth, were given in [4], where, along with plots are also given 

tabular values of damping coefficients for a number of values of the original parameters, as well as plots of the combined mass 

and damping coefficients of elliptic cylinders. The calculations were carried out with the HFEM. The solution of  the similar 

problem by the boundary integral equation method was presented in [1-3] for circular and elliptic cylinders. The case of a 

homogeneous fluid of finite depth was treated in [8], where the HFEM was used to determine the radiation and diffraction loads 

for a circular cylinder, and the diffraction load for an elliptic cylinder placed under an angle of  attack. The complete statement 

of the problem, presented in Section 1, was used in all studies mentioned above. The numerical results, obtained within a 

somewhat simpler statement, when a stationary potential was selected to solve the radiation and diffraction problems, and 

determined for an unbounded fluid, are given in [5]. 

The T imman-Newman  relations [15] are satisfied for low motion velocities of bodies symmetric with respect to the 
vertical axis: 

676 



a 

3 ' :  /~ 
". M17 - 

"l'. """ Me2 

0 I ~  I I 

- 7 - ~  I " -  M'2 - a s -  

-2- ! -r 

- 3 -  -~,5- 

e "% . M, s 1,o- 
, - ~  ---%, o,s- 

-1- AM/ -0,5- 

- e  -%0 

b c 

�9 \ . . . .  M22 ;\ ** "'" MZ2 
�9 * " * *  M " " ~ * * *  M33  - \ .  .,, - \ - .  0.. �9 = = o  �9 Be  o o a o o o  " . \~  �9 . . . . . . . . .  " . . ~  

I I ~  I i I I I I I I  I I  I ~  I I  I I  I I  I 

I 

! ~I i l l 

""~21 -o,s-  ~ /  "'" M2' 

-~,2- 

o,,_: 
I- ! __ r _ , . | , - l - - - i  , 

o ~,~ o,a o cr o,s o 0,4 o,a 

o.,%/g ~e ~ /9 ~%lff 
Fig. 3 

%'12 -~- - -T21 , T23 m ~ l ' 3 2  , l"13 m "I31. 
(4.1) 

For U ~ oo, independently of the shape of the body ~'jk = zkj [8, 15]. 

The numerical calculations of the combined mass and damping coefficients are given, respectively, in Figs. 3 and 4 
for an elliptic cylinder, located under the free surface in a homogeneous fluid (a), under the separation surface in a two-layered 

unbounded fluid (b), and in a two-layered fluid with a bounded upper layer (c) with 

a = h = 2b, t  = 0,03, H = b , U / ~ g b  = 0.4. (4.2) 

The number of elements in the HFEM equals 18. In Fig. 3 the combined mass coefficients are presented in dimensionless form 

M~ = f f ~ / m j f l j  = 1--,-~, ), (Mu,M21) = (/,t n, - ! t 2 1 ) / m n ,  

(Mt3,M23,M31,M32) = (,tt 13,~.~23~t31, - -  ~r ) / b m  n, 

where mjj are the combined mass coefficients of an elliptic contour of an unbounded homogeneous fluid [13]: 

rn n = xp2b 2, m22 = ~p2a 2, m33 = a-P2(a 2 - b2)2/8. 

The dimensionless damping coefficients are given in Fig. 4 in the form 

( A z 3 '  A 3 t ,  A 2 3 ,  A 3 2 )  = (Jlz3,  2 3 1 ,  ~'23, - ' 1 3 2 ) w / P ~  b2. (4.3) 

The upper portions of Fig. 4 show the approximate value of the diagonal damping coefficients zijj, obtained by using (3.1), 

(3.2), and values rendered dimensionless similarly to (4.3). It is seen that this approximation provides a quite crude 

representation for the damping coefficients, particularly for A33. The crosses indicate the values of %2/~ = 0.3906 (Figs. 
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3a,b, 4a,b) and 0.3642 (Figs. 3c, 4c). For the given velocity of motion relations (4. I) are well satisfied. The effect of the 

velocity of motion on the radiation loading is most important at low frequencies. 

The numerical results for diffraction loading on an elliptic contour at the same values of the original parameters of (4.2) 

are given in Fig. 5 for incident opposite (a) and codirectional (b) waves, while lines 1-3 corresponds to a homogeneous fluid 
with a free surface, and a two-layered fluid with an unbounded and bounded upper layer. The arrows in Figs. 5, 6 show the 

wave number values kob = 1.5626 and 1.8277, corresponding to the critical frequencies o~ c for the unbounded and bounded 

upper layer. At these frequencies the velocity of motion coincides with the group velocity of the incident codirectional waves, 
and a sharp reduction occurs in the diffraction loads. Unlike the case without motion, even for a symmetric body the 

codirectional and opposite waves provide different perturbation forces. The results of the approximate solution, obtained under 

the assumption of a deeply submerged body, since, as in the case of the damping coefficients, they provide only a crude 
estimate. Figures 4a-c of [11] show values of the perturbation forces for the same geometric parameters of (4.2) and U = 

0. The effect of motion is manifested most strongly on the torque value. 
The calculations presented in Figs. 4, 5 refer to a low velocity of motion, practically not generating any substantial 

surface and internal waves (compare with the wave resistance characteristics in Figs. 3, 4 of [10]). However, even small 

stationary wave motions affect substantially the radiation and diffraction loading. 
The studies performed make it possible to estimate the effect of stratification on the hydrodynamic characteristics of 

shaking a cylindrical body in the presence of motion. 
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